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Vitali-Hahn-Saks Theorem for Hyperbolic Logics 

Marjan Matvejchuk 1 

Received October 6, 1994 

An analog to the Vitali-Hahn-Saks theorem for indefinite measures on hyperbolic 
logics of projections in indefinite metric spaces is proved. 

1. INTRODUCTION 

One of the problems of quantum mechanics is the description of measures 
on a quantum logic. 

An important interpretation of a quantum logic is the set II if all orthogo- 
nal projections of a Hilbert space H. The remarkable Gleason theorem (Glea- 
son, 1957) says: Let H be a Hilbert space, dim H -- 3, and let Ix: II ~ R 
be a probability measure. There exists a positive trace class operator T such 
that Ix(p) = tr(Tp), Vp e 11 

The problem of the construction of a quantum field theory leads to 
indefinite metric spaces (Dadashan and Horujy, 1983). In this case, the set 
P of all J-orthogonal projections serves as an analog to the logic 11 There 
is an indefinite analog to the Gleason theorem (Matvejchuk, 1991a, b; also 
see Matvejchuk, n.d.): Let H be a J-space, dim H -->- 3 and let Ix: P ~ R be 
an indefinite measure. There exist a J-self-adjoint trace class operator T and 
a semitrace Ix0 such that Ix(p) = tr(Tp) + Ix0(P), Vp E P. 

2, A METHOD FOR CONSTRUCTING PROJECTION LOGICS 

Let A be a W*-algebra acting in a complex Hilbert space H with an 
inner product (., .). The sets H and L of all orthogonal projections and of all 
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projections (=idempotents)  in A are important examples of orthomodular 
posets (=  quantum logics). 

Let J be a linear or conjugate linear invertible bounded operator in H. 
Put [x, y] = (Jx, y), Vx,  y ~ H. Let B be an algebra of bounded operators 
in H with the unit I closed in the weak operator topology and closed with 
respect to the J-adjointness, i.e., if a ~ B, then a ~ E B, where a ~ is a bounded 
operator such that [ax, y] = [x, a~ Vx, y ~ H. Such an algebra is called 
a J-algebra. Denote by P [= P(B)] the set of  all J-self-adjoint projections 
from B. With respect to the ordering p <_ g r pq = qp = p and the 
orthocomplementation p --~ p l  = I - p the set P is a quantum logic. In 
general, P is not a lattice or a ~r-logic. 

There have been many works dedicated to J-self-adjoint operators if J 
is a self-adjoint (in H)  operator, J ~ _+I. Then there exist orthogonal projec- 
tions Q+ and Q -  such that Q§ + Q -  = I, J = Q+ - Q- .  Put H + = Q+H, 
H -  = Q - H .  According to the terminology of Azizov and Iokhvidov (1989), 
[., .] is an indefinite metric in H, J is a canonical symmetry, H = H+[~-]H - 
is a canonical decomposition, and H is a Krein space (sometimes H is called 
a J-space). Let p ~ B(H) .  It is easy to see that [pz, y] = [z, py], Vz, y 
H c~ p = Jp*J. 

We shall show that there exists P which is isomorphic to I1 or L. 
Let K = H �9 H and let B be a W*-algebra of operators acting in K of 

the form 

where a ~ A. We suppose that 

j = 

(0 o) 

o,) 
K is a J-space with respect to the metric [x, y] = (Jx, y) and B is a J-algebra 
in K. It is obvious that 

p , p E I I  

Hence I I  and P(B)  are isomorphic logics. 
Now let B be a W*-algebra of  operators 

(o 0) b ' a , b ~ A  

acting in K. Let us suppose now that 
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K is a J -space  with respect  to the metric [x, y] = (Jx, y) and B is a J -a lgebra  
in K. It is obvious that 

} P(B) = q ,  , q  E L 

Hence  L and P(B) are also isomorphic logics. 
A specific character of  J -spaces  becomes  fully transparent in the logic 

P when A is a W*-factor  and J ~ A. In this case A is called a W* J-factor. 
A W* J-factor  A is said to be a W* P-factor if at least one of  the projections Q+ 
or Q -  is finite with respect  to A. The logic P(A) is said to be a hyperbolic logic. 

Denote by P~ ( P - )  the set o f  all projections p ~ P for  which the subspace 
pH is positive, i.e., (Vz E pH, z =P 0, [z, z] > 0) (respectively, negative, i.e., 
Vz e pH, z r 0, [z, z] < 0). Any projection e e P is representable (not 
uniquely) in the form e = e+ + e , where e+ e P+, e_ ~ P . Note that p 
E P§ O a n d p  ~ P -  r O. 

A mapping  IX: P --~ R is called a measure if  ix(e) = ~ ix(e0 for any 
representation e = N e~ (the latter sum is understood in the strong sense). A 
measure  ix is said to be indefinite if  IX/P§ >- 0 and ix/P- <- 0; semitrace if  
there exist a faithful normal  semifinite trace "r on A and a number  t such that 
ix(e) = tr(e+), Ve e P or Ix(e) = tr(e_), Ve e P. Any  measure  Ix can be 
represented as a sum of  the Hermit ian component  Ixh(e) = 1/2(Ix(e) + Ix(e*)) 
and the skew-Hermit ian  componen t  Ix, = 1/2(Ix(e) - Ix(e*)). Clearly, if  ~x 
is an indefinite measure,  then its Hermit ian componen t  is an indefinite mea-  
sure, too. Note that an indefinite measure  is an analog to a probabil i ty measure.  
Also note that a nonzero semitrace exists only on a W* P-factor.  

It was proved (Matvejchuk,  1991a,b) that for  any indefinite measure  
Ix: P --~ R in a W* J-factor  A (the type of  A is different f rom I2) there exist 
a J-self-adjoint  linear functional ~ ~ A ,  and a semitrace ix0 such that 

Ix(e) = ~(e )  + Ixo(e), Ve ~ A (1) 

In addition, if  Ix is a Hermit ian measure,  then the functional g can be 
chosen so that g ( - )  = g (Q+ .  Q+) + g ( Q - -  Q- ) .  

3. THE MAIN RESULTS 

Without  loss of  generali ty we may assume that there exists a partial 
isometry w E A with the initial projection Q+ and the final one ww* <- Q-.  
Let p E P. Then Q+pQ+ = Q+JpJQ+ = Q+p*Q+. Hence  Q+pQ+ and, by 
analogy, Q - p Q -  are self-adjoint operators.  Moreover ,  

- (Q-pQ+)* = -Q+p*Q-  = JQ+p*Q-J = Q+Jp*JQ- = Q+pQ- (2) 
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Hence 

I Q-PQ+[ = ((Q-PQ+)*(Q-PQ+))I/2 

= (_(Q+pQ-)(Q-pQ+))1n 

= (Q+p(Q+ - l)pQ+) I/2 

= ((Q+pQ+)(Q+pQ+) _ (Q+pQ+)I/2 

= (x  2 - x )  1/2 ( 3 )  

Here x --- Q+pQ+. Thus x 2 - x -> 0. Denote by x+ and x_ the positive and 
the negative parts of x, respectively, and by Fy the orthogonal projection onto 
the subspace yH, Vy  ~ A. Then we have x+ --- F,+. Denote by p t, Q+ and 
p ,x Q- the orthogonal projections onto subspaces p H  fq Q+H and p H  71 
Q - H ,  respectively. Obviously p ^ Q+ (p /x  Q-)  is the greatest orthogonal 
positive (negative) projection such that p ^ Q+ <- p (p ^ Q-  --- p). 

Proposition 1. For any p E P the formula 

p = X "4- V ( X  2 - -  X )  1/2 - -  ( X  2 - -  X ) I / 2 V : ~  - -  11(X - -  F x ) l ~  ~ q-- p ^ Q-  (4) 

is true. Here x = Q+pQ+, and v is a partial isometry in the polar decomposition 
Q-pQ+ = v l Q-pQ+ I . 

Conversely, let x ~ A be a self-adjoint operator such that xQ § = x; and 
x+ -> Fx+, and let v be an isometry with the initial projection v*v >- Fx and 
the final one vv* <- Q- .  Then (4) defines a projection in P. In addition, if x 
--> Fx, then p E P+ and i f x  -< 0, then p ~ P- .  

Proof  By (3), Q-pQ+ = v(x 2 - x) in. By (2), Q+pQ- = - ( x  z - x)l/2v *. 
Now we show the equality 

Q - p Q -  = - v ( x  - Fx)v* + p / x  Q -  

For any z ~ H and zl ~ p H  71 Q - H  we have 

- + Z  (Q p Q  , zl) = (z, (Q-pQ+)*zl) 

= - - ( Z ,  + - Q p Q  zl) = - ( z ,  Q§ = - ( z ,  o) = o 

Hence Q-pQ+H I p ^ Q - H .  In addition, 

Q+pQ- = (Q+pQ+)(Q+pQ-) + ( Q + p Q - ) ( Q - p Q - )  

i.e., 

( X  2 - -  X ) I / Z v *  = X ( X  2 - -  X ) I I Z v *  -.~ ( X  2 - -  x ) l /Zv . (Q-pQ-  ) 

Hence 
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(X 2 - -  x ) l l 2 ( f x  - -  X ) V  ~: = (X 2 - -  x ) l / 2v* (Q-pQ - )  ( 5 )  

I f  z ~ Q-II 0 Q-pH, then v*z = O, p ^ Q - z  = 0, and Q - p Q - z  = O. 
This means  that Q - p Q - z  = - v ( x  - Fx)v*z + p / x  Q - z .  

I f  z E p ix Q - H ,  then v*z  = 0 and 

Q - p Q - z  = z = p A Q - z  - v(x  - F~)v*z 

I f  

z ~ Q - p I 4 O p ^ Q - H  

then 

v*z ~ (x z - x ) m H  

The equality (5) implies that 

and p /x Q - z  = O 

v * Q - p Q  z = (Fx - x )v*z  = (Fx - x )v*z  + p ^ Q - z  

i.e., - v ( x  - Fx)v*z + p / x  Q z = Q - p Q - z ,  V z  ~ H - .  

Now let x ~ A be a self-adjoint  operator  such that x Q  + = x, x+ >- 

F~+, and let v E A be an isometry with the initial projection v*v >-- F~ and 
the final one vv* <- Q - .  Using the right side of  (4), define an operator  p. It 
can be easily verified that p2 = p and J p * J  = p. Hence p E P. I f  x --- Fx, 
then p* Jp  >- O. Hence 

[pz, pz] = ( Jpz, pz )  = (p*Jpz ,  z) >- O, Vz ~ H 

Thus p ~ P+. I f x  --< O, then p * J p  <-- O. Hence p ~ P - .  QED 

In the sequel a projection p of  the form 

p = x + v(x 2 - x) 1/2 - ( x  2 - x ) l / 2 1 1 *  - v ( x  - I~r)V* 

will be denoted by p(x,  v). Let x and v be f rom Proposit ion 1. It is clear that 
p = p(x+, v) + p (x_ ,  v) + p ^ Q - .  It is directly verified that lip(x, v)[[ = 
II 2x - Ill- Thus the fol lowing remark  is true. 

R e m a r k  1. []p(x, v)l[ = max{ ]lp(x+, v)l], lip(x-, v)ll }. 

Theorem 1. Let P be the set of  all J-self-adjoint  projections f rom a 
semifinite W* J-factor  and let Ix": P --~ R be a sequence of indefinite measures.  
Assume that for every projection p ~ P there exists a finite 

l im Ixn(p) ___ Ix(p) 
n ----)~ 

Then a'(p~) --% 0 implies Ilp~ll-llxn(p,0 - %  0 uniformly in n. In addition, if 
A is a finite factor, then ix: P ~ R is an indefinite measure.  
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Proof The proof will consist of two steps. 
1. We first prove an analog to this theorem for a measures on I~ Let 

v": 17 --~ R be a sequence of measures such that Vp ~ II there exists a finite 
lim~_~=v~(p) = v(p). By the analog to the Gleason theorem [see a sketch of 
the proof in Matvejchuk (1988) and the full proof in Matvejchuk (1987)], there 
exists a sequence of self-adjoint ultraweakly continuous linear functionals v" 
such that v"(p) = v(p), Vp ~ II. Next, by contradiction and Lemma 5.5 
(Takesaki, 1979, Chapter 3), we can obtain the assertion for measures on 1-[ 

Still, we would like to give another proof which almost completely 
repeats the classical one (Dunford and Schwartz, 1958, Chapter 3, Section 
7). We do not here need the aforementioned analog to the Gleason theorem. 
We make use of the continuity of v n in the norm [lalll = T( l al ), a e A alone. 
Denote by Ml the set {e e II: "r(e) < +~}.  Let e > 0 be arbitrary. The set 

Mk(e) = {p ~ MI: sup,>_llvk(p) - vk+"(p)[ <- ~} 

is closed in the norm II'lll. By construction, MI = Uk___l Mk(e). The set MI 
is a complete metric space with respect to the norm I[" Ill. Thus MI is a set 
of the second category. Hence at least one of the sets Mk(e), say, Mko(e), 
contains a nonempty open set M (C_ M0. Hence there exist P0 e MI and 8 
> 0 such that liP - Poll1 -< 8 implies sup,_>l Ivk~ -- Vk~ --< e. 

Let now "r(g) --< 8, and g E Mr. Denote by g' the orthogonal projection 
onto pogpoH. Then -r(g') -< 8. Hence for Pl = Po - g' and P2 --- Pl + g' 
we have lip1 - po l l~  -< 8 and l ip2 - po l l1  - 8. In addition, P2 - Pl = g. 
Thus for k --- ko the following inequality holds: 

Irk(g)[--< ]vk0<g  I + lvko(g) - vk(g)t 

<_ ]vko(g)l + [v~~ -- ,,k(p2) ] + Iv~~ -- , ,k(p0[  

-----Ivk~ + 2~ (6) 

Observe that x(e,0 ---)~ 0 (e,~ ~ 11) implies vkO(eo,) - %  O. Hence by (6), "r(e,0 
---)~ 0 implies vk(e~,) - %  0 uniformly in k. It is obvious that the function 
v: I-I --) R is finitely additive. If r(I)  < ~, then v is completely additive by 
the above. Thus v is a measure. 

2. Now, let ixn: P ---) R be a sequence of indefinite measures from the 
assumption of the theorem. It is clear that the sequence (t~) of the Hermitian 
components of (p~") satisfies the assumption also. By (1), 

~7,(e) = ~7~(e) = p~(e) --- 0, Ve ~ P, e -< Q-  

By the assumption, there exists a finite 

lim tx~(e), = lim txT, (Q-eQ- ) ,  Ve  ~ P, e <- Q-  
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Hence there exists a finite lira ix~(a), Va E A, a = Q-aQ- .  
Let  a net (p~) C P be such that "r(p ~) -+ 0. Denote  by e~ the orthogonal 

projection onto Q-p~H. Then -][p~lle~ <- Q-p~'Q- <- IIp~lle~. Hence 

I~hh(Q-p~Q-)t <_ Ilp=ll]~(e~)] 

By this inequality and step 1, ?(p~) - %  0 implies 

][P~'ll-~l-~hh(Q- ff 'Q-)[ --% 0 uniformly in n 

Let  e ~ P, e --< Q+, and x o = 13e, 13 < O. Also let Vo be a partial isometry 
with the initial projection e and the final one -<Q-,  and let p = p(xo, Vo). 
By Proposition 1, p ~ P - .  There exists a finite 

l im~_~(~,(p)  - tx'~(Q-pQ-)) 

= l im(~ , (p)  + ~ ( p )  - pg~(Q-pQ-)) 

= lira pg~(O+pQ+) 

= 13 lim p.~(e), Ve -< Q+ 

Hence there exists a finite lim tx~(e) = lim t#r(e). Again, by analogy with 
ix-~(Q-.e-), we obtain that -r(p =) ---~ 0 implies ]lff']1-11-~hh(Q*p'~Q+)l ---~ O, 
lip '~11-11 ~8(p=) [ ~ 0, and thus lip '~ II -' l  ~(P=)]  ~ 0 uniformly in n. 

Consider now the sequence (Ix~) of  the skew-Hermitian components  of  
(ixn). For any p ~ P -  we have p* ~ P - ,  

o >- ~(p) = o,h(p) + ~,(p) 

and 

Hence 

0 ~ p.(p*) = ~h(P*) + IXs(P *) = Nh(P) -- I'~s(P) 

I~h(p)] = - ~h(p) - t~,(P) l (v) 

By analogy, 

I s(p>l_< Vp 1,+ (8) 

Let  p~ = p(x% v ~) + p~/x Q-. Put p~ = p(~+, v ~) and p~_ = p(x% v ~) 
+ p~/x  Q- .  By (7), (8), and Remark 1, we have 

--]]p~II-t(]lxi~'(p~_)l + ]lx~(p~_)l) 

<- lip% I1-1[ tx,!(p~_) ] + ilp~ 11-1[ ~g(p~_) i 

-< lip% II-ll ~,(p~) ] + ilp~ l]-tl tx~(p~_) [ 
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Hence  if -r(p ~) -->~ 0, then lip ~ 1[ - x I p,~(p~) [ --->~ 0 uniformly in n. Finally, 

I l f l l - l i x (p  ~) -- I l f l l - ~ ( ~ ( f )  + Ix,7(p~)) -->5 0 uniformly in n 

N o w  assume  that "r(I) < ~ .  Put Ix(p) = l im Ixn(p), Vp ~ P. It is clear 
that piP+ -> 0 and ix~P- <- O. Let e = ~i~1 ei, where  e, ei ~ P. Then Pk = 
E~ ei --> 0 in the strong sense and "r(pk) ---> 0. There exists r -- 1 such that 
1 -< Ilpdl - r, Vk. By  the above,  Ixn(pk) --->k 0 uniformly in n. Hence  Ix(p~) 
--->k 0. This means  Ix(e) = E Ix(ei). Therefore,  IX: P ---> R is an indefinite 
measure.  Q E D  
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